
CS106X Handout 35S
Autumn 2019 November 21, 2019

CS106X Midterm Examination Solution

Your section leading staff collaboratively graded all of the midterms over Thanksgiving break,
and scores will be published later tonight via Gradescope.

The midterm was a tough one and required a mastery of pointers, dynamic memory
allocation techniques, and linked structures. The second problem precisely underscored why
it’s so very important to get the minutiae of single pointers, double pointers, and references to
pointers correct, as mistakes are unforgiving and lead to difficult-to-triage bugs. Here’s the
histogram showing how everyone did:

Each circle represents a single exam, and scores ranged from 12 to a perfect 35, and the
median grade was a 23. Because the median was below 80%, the 23’s curves up to an 80%,
the 35s curve stay put at 100%, and everything else scales up accordingly—that is, 35 Þ 100,
29 Þ 90, 23 Þ 80, 17 Þ 70, 11 Þ 60.

The rest of this handout includes my own solutions and the criteria we used to grade. Of
course, we recognize these exams count for a large portion of your grade, so we try to be as
transparent as possible about the criteria. If you have a legitimate concern about how your
midterm was graded, come talk to Jerry during his office hours or engage me over email.

All regrade requests must come in by December 9th, which is CS106X Final Project
Presentation Day. J After that, all scores are frozen, since I’ll want to submit all final grades
on the 10th or 11th.

0

5

10

15

20

25

30

35

CS106X Autumn 2019 Midterm II

 2

Solution 1: Linked Lists

a. [5 points] My solution uses a node **, though we’re perfectly fine if you use prev and
curr pointers as our initial linked list examples did.

 struct node {
 int value;
 node *next;
 };

 static bool contains(node *& list, int value) {
 node **currp = &list;
 while (*currp != NULL and (*currp)->value != value) {
 currp = &(*currp)->next;
 }

 bool found = *currp != NULL;
 if (found && *currp != list) {
 node *curr = *currp;
 *currp = curr->next;
 curr->next = list;
 list = curr;
 }
 return found;
 }

b. [5 points] This function is trickier than it might seem, because you need to not only build
the reverse linked list, but you also need to identify the very last next field of the original
list and update it to address the reverse.

 static void mirror(node *list) {
 node *reverse = NULL;
 for (node *curr = list; curr != reverse; curr = curr->next) {
 node *n = new node;
 n->value = curr->value;
 n->next = reverse;
 reverse = n;
 if (curr->next == NULL)
 curr->next = reverse;
 }

 }

Problem 1a Criteria:
• Correctly crawls the list to find the matching node: 1 point
• Correctly compiles the information needed to splice a

matching node out: 1 point
• Properly rewires the matching node’s predecessor and

successor to be neighbors: 1 point
• Correctly rewires the matching node to lead the list: 1 point
• Properly handle the situation where the matching node is at

the front: 1 point (it’s possible code that doesn’t need to be
run is fine when it runs)

Problem 1b Criteria:
• Correctly visits every node in the original list: 1 point
• Correctly allocates a new node for every value in the original

and populates its value field: 1 point
• Properly wires the accumulation of new nodes to be the

reverse of the original list: 1 point
• Properly concatenates the reverse to the original just as

everything finishes
• Correctly handles both the empty list and the singleton list

(ideally without special casing): 1 point

 3

Solution 2: Trie Insertion Trace

a. [5 points] This is the more interesting half of the problem, because it’s clear how the first
version breaks down. (The new nodes in both part a and part b have uninitialized bools, but I
draw them as false, since the trie node we relied on in class had a constructor and set the
isWord bool to false. We were equally happy with false or with questions marks.

node *ensureNodeExists1(node *root, const string& str, int pos = 0) {
 if (root == NULL) root = new node;
 if (pos == str.size()) return root;
 node *child = root->suffixes[str[pos]];
 return ensureNodeExists1(child, str, pos + 1);
}

All str variables at all levels refer to same string. word

myroot

false
b c

false
e

true
d

true

false
a

false
b g

true false
e

true
d

true

"beat"

0 pos root

str

child

1 pos root

str

child

2 pos root

str

child
a

3 pos root

str

child

false
t

4 pos root

str

false

Problem 2a Criteria:
• Properly display variables like

pos and str: 1 point
• Properly initializes all child

values to be copies of pointers.
• Properly initializes all roots to

be copies of child (and then
overwrites it if NULL)

• Properly allocates nodes: 1
point

• Properly inserts missing letters
and maps them to NULL.

 4

Solution 2: Trie Insertion Trace [continued]

b. [5 points] As the problem statement implied this version worked as expected, you shouldn’t be
surprised very much of the diagram below.

node *ensureNodeExists2(node *& root, const string& str, int pos = 0) {
 if (root == NULL) root = new node;
 if (pos == str.size()) return root;
 node *&child = root->suffixes[str[pos]];
 return ensureNodeExists2(child, str, pos + 1);
}

All str variables at all levels refer to same string. word

myroot

false
b c

false
e

true
d

true

false
a

false
b g

true false
e

true
d

true

"beat"

0 pos root

str

child

1 pos root

str

child

2 pos root

str

child
a

3 pos root

str

child

false
t

4 pos root

str

false

Problem 2b Criteria:
• Properly display variables like

pos and str: 1 point
• Properly initializes all child

values to reference map
values: 1point

• Properly initializes all roots to
reference whatever child
references: 1 point

• Properly allocates nodes: 1
point

• Properly inserts missing letters
and ultimately has each map to
new nodes: 1 point

 5

Solution 3: All Things Tree

a. [7 points]
 static void contract(node *& root) {
 if (root == NULL) return;
 contract(root->left);
 contract(root->right);
 if ((root->left == NULL && root->right == NULL) ||
 (root->left != NULL && root->right != NULL)) return;

 node *child = root->left;
 if (child == NULL) child = root->right;
 delete root;
 root = child;
 }

b. [8 points]
 static Set<node *> construct(int low, int high) {
 Set<node *> trees;
 if (high < low) {
 Set<node *> trees;
 trees += NULL;
 return trees;
 }

 for (int divider = low; divider <= high; divider++) {
 Set<node *> lefts = construct(low, divider - 1);
 Set<node *> rights = construct(divider + 1, high);
 for (node *left: lefts) {
 for (node *right: rights) {
 node *root = new node;
 root->value = divider;
 root->left = cloneTree(left);
 root->right = cloneTree(right);
 trees.add(root);
 }
 }
 }
 return trees;
 }

 static Set<node *> construct(int n) {
 return construct(1, n);
 }

Problem 3a Criteria:
• Identifies the NULL base case (the original tree may be empty, so it’s

necessary): 1 point
• Recursively contracts the left and right subtrees: 2 points
• Correct returns without surgery if the root was a leaf or was full: 1

point
• Correctly identifies the child that should be hoisted up a lever: 1 point
• Correctly rewires the tree around the one-child node: 1 point
• Correctly levies the delete call against the removed node: 1 point

Problem 3b Criteria:
• Properly reframes the primary call to be a wrapper

function with lower and upper bounds: 1 point
• Properly handles the empty-range situation by returns

a singleton set that’s the empty tree: 1 point
• Correctly considers every single value in the range

[low, high] as root values, including low and high: 1
point

• For each choice of divider, recursively constructs the
set of all legal binary search trees that can hang to the
left and right: 2 point

• Properly allocates a new node for each left-right
pairing and embeds copies of divider, left, and right:
2 points

• Properly adds each tree to the set and ultimately
returns it: 1 point

