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This is an open-book, open-note, closed-electronic-device exam.  You have 90 minutes to 
complete it. 
 
 
Good luck! 
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I accept the letter and spirit of the honor code. 
 
 (signed) __________________________________________________________ 
 

   Score Grader 

1. Linked Lists [10] ______  ______ 

2. Trie Insertion Traces [10] ______  ______ 

3. All Things Tree [15] ______  ______ 

 
Total [35] ______  ______ 
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Problem 1: Linked Lists [10 points] 

a. [5 points] Implement a predicate function called contains that walks a singly linked list 
for value and returns true if and only if the element is found, and false otherwise.  
Additionally, if value is found, then contains should splice the node storing value 
out of the list and prepend it to the front (unless the node was already at the front, in 
which case it should be left alone).  The result is a linked list storing the same information, 
except the key of interest now resides at the front.  If searching for a key is likely to be 
followed by repeated search for it—in practice, not at all unusual—then these types of 
updates can reduce the average running times of searches, since frequently accessed 
values will generally be closer to the front of the list. 
 
Use the rest of this page to present your implementation: 
 
   struct node { 
      int value; 
      node *next; 
   }; 
 
   static bool contains(node *& list, int value) { 
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b. [5 points] Implement a function called mirror which accepts a linked list of integers and 
appends the reverse of that list to its end, resulting in a list that’s twice the length.  That 
means that mirror would transform the list  
 

3 ® 4 ® 1 ® 5 ® 1 
into 

3 ® 4 ® 1 ® 5 ® 1 ® 1 ® 5 ® 1 ® 4 ® 3 
 

Use the same node definition used for part a, and use the rest of this page to present your 
implementation: 

 
   static void mirror(node *list) { 
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Problem 2: Trie Insertion Trace [10 points] 

Assume the following node definition for a trie: 
 

struct node { 
 bool isWord; 
 Map<char, node *>; 
}; 

 
and consider the following two recursive implementations, each of which works to ensure the 
nodes needed to encode a word all exist. 
 

node *ensureNodeExists1(node *root, const string& str, int pos = 0) { 
 if (root == NULL) root = new node; 
 if (pos == str.size()) return root; 
 node *child = root->suffixes[str[pos]]; 
 return ensureNodeExists1(child, str, pos + 1); 
} 
 
node *ensureNodeExists2(node *& root, const string& str, int pos = 0) { 
 if (root == NULL) root = new node; 
 if (pos == str.size()) return root; 
 node *&child = root->suffixes[str[pos]]; 
 return ensureNodeExists2(child, str, pos + 1);  
} 
 

For this problem, you’re to assume the 
illustration to the right precisely captures how 
word (of type string) and myroot (of type 
node *) have been initialized just prior to a 
call one of the two functions above. 
 
On the next two pages, you’ll draw full 
memory traces to highlight why 
ensureNodeExists1 fails to fully work 
even though ensureNodeExists2 does. 
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Problem 2: Trie Insertion Trace [continued] 

a. [5 points] Draw the state of memory when a call to ensureNodeExists1(myroot, word) 
bottoms out, just before its return root statement executes.  You’ll want to draw all of the 
parameters for all recursive calls, being clear what each of the parameters associated with each 
of the recursive calls contains.  If you need to add key values to suffixes in any of the 
existing nodes, just draw them in as cleanly as possible.  

 
node *ensureNodeExists1(node *root, const string& str, int pos = 0) { 
 if (root == NULL) root = new node; 
 if (pos == str.size()) return root; 
 node *child = root->suffixes[str[pos]]; 
 return ensureNodeExists1(child, str, pos + 1); 
} 
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Problem 2: Trie Insertion Trace [continued] 

b. [5 points] Now draw the state of memory when ensureNodeExists2(myroot, word) 
bottoms out, just before its own return root statement executes.  You’ll want to draw all of 
the parameters for all recursive calls, being clear what each of the parameters associated with 
each of the recursive calls contains.  If you need to add key values to suffixes in any of the 
existing nodes, just draw them in as cleanly as possible. 
 

node *ensureNodeExists2(node *& root, const string& str, int pos = 0) { 
 if (root == NULL) root = new node; 
 if (pos == str.size()) return root; 
 node *&child = root->suffixes[str[pos]]; 
 return ensureNodeExists2(child, str, pos + 1); 
} 
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Problem 3: All Things Tree [15 points] 

a. [7 points] Assume the following node definition for a binary search tree: 
 
 struct node { 
  int value; 
  node *left, *right; 
 }; 
 
Implement a function called contract, which converts a  
binary search tree into a full binary search tree by  
removing and deleting all half nodes—that is, internal 
nodes with only one child.  If, for instance, the root of the binary search  
tree on the upper right is passed to our contract function, the tree 
would be transformed into the binary search tree below it. 

 

Use the rest of this page to present your recursive implementation: 
 
   static void contract(node *& root) { 
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Problem 3: All Things Tree [continued] 

b. [8 points] There are five valid binary search tree 
structures on three keys, and you can see what 
they are on the right.  For this problem, you’re to 
write a function that recursively constructs all 
valid binary search storing the first n positive 
integers and returns them in an unordered 
Set<node *>.  So, a call to construct(3) 
would return a Set storing the roots of the five 
trees on the right.  None of the trees should share 
any memory whatsoever. 

 

Use the rest of this page to present your implementation.  You needn’t worry about 
deleting any excess memory, and you can assume the existence of a cloneTree 
function, which accepts the root of a binary tree and returns the root of a deep copy—that 
is, a replica of the full tree that doesn’t share any memory with the original. 

 
static node *cloneTree(node *) { // assume it’s implemented } 
static Set<node *> construct(int n) {  

 

 
 

  

 

 
  

 
 
 
 
 
 
 
 
 
 
 

 
 


