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Section Solution 
 

Problem 1 Solution: Cartesian Trees 

I gave this question as an exam question about ten years ago, and most did very well on it.  
There are several approaches, but the most straightforward is one which scans the 
sequence of interest and identifies the minimum element (and its location), establishes that 
as the root, and then recurs on either side, as with: 

 
static int findIndexOfMinimum(const Vector<int>& inorder, int low, int high) { 
 int index = low; 
 for (int i = low + 1; i <= high; i++) { 
  if (inorder[i] < inorder[index]) { 
   index = i; 
  } 
 }  
 return index; 
} 
 
static node *arrayToCartesianTree(const Vector<int>& inorder, int low, int high) { 
   if (low > high) return NULL; 
   int index = findIndexOfMinimum(inorder, low, high); 
 node *root = new node; 
 root->value = inorder[index]; 
 root->left = arrayToCartesianTree(inorder, low, index - 1); 
  root->right = arrayToCartesianTree(inorder, index + 1, high); 
 return root; 
} 
 
static node *arrayToCartesianTree(const Vector<int>& inorder) { 
 return arrayToCartesianTree(inorder, 0, inorder.size() - 1); 
} 

 

This O(nlgn) algorithm is the most straightforward divide-and-conquer algorithm I can think 
of, since it exploits the recursive substructure of trees.  There are, not surprisingly, other 
approaches to building the tree.  One very clever algorithm—an O(n) one that makes use 
of a stack—requires just a single pass over the entire array.  It requires a much more careful 
implementation than the one needed for the O(nlgn) algorithm above. 
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Problem 2 Solution: Patricia Trees 

The containsWord routine is nontrivial, because it’s as much about trees as it is about 
advanced string manipulation.  It’s complicated by the fact that the letters in the 
connection may be longer than the remaining portion of the word. 

 
static int findConnection(const Vector<connection>& children,  
                          const string& word) { 
 for (int i = 0; i < children.size(); i++) { 
  string prefix = word.substr(0, children[i].letters.size()); 
  int cmp = prefix.compare(children[i].letters); 
  if (cmp == 0) return i; 
  if (cmp < 0) break; 
 } 
  
 return -1; 
} 
 
static bool containsWord(const node *root, const string& word) { 
 const node *curr = root; 
   string clone = word; 
   while (!clone.empty()) { 
    int index = findConnection(curr->children, clone); 
  if (index == -1) return false; 
  clone = clone.substr(curr->children[index].letters.size()); 
  curr = curr->children[index].subtree; 
 } 
     
 return curr->isWord; 
} 

  
Problem 3 Solution: Exponential Trees 

Exponential trees are similar to binary search trees, except that the depth of the node in the 
tree dictates how many elements it can store.  The root of the tree is at depth 1, so it 
contains 1 element and two children.  The root of a tree storing strings might look like this: 
 
 
 
 
 
 
 
 
 
 
 
 

everything < "fa" everything > "fa" 

fa 
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If completely full, a node at depth 2—perhaps the right child of the above root node—
might look like this: 
 
 
 
 
 
 
 
 
 
 
 
Generally speaking, a node at depth d can accommodate up to d elements. Those d 
elements are stored in sorted order within a Vector<string>, and they also serve to 
distribute all child elements across the d + 1 sub-trees. 
 
We can use the following data structure to build up and manage an exponential tree: 

 
struct expnode { 
 int depth;     // depth of the node within the tree 
 Vector<string> values;  // stores up to depth keys in sorted order 
 expnode **children;  // set to NULL until node is saturated. 
}; 
 

• Each node must keep track of its depth, because the depth alone decides how 
many elements it can hold, and how many sub-trees it can support. 

• The string values are stored in the values vector, which maintains all of the strings 
it’s storing in sorted order.  We use a Vector<string> instead of an exposed 
array, because the number of elements stored can vary from 0 to depth. 

• children is a dynamically allocated array of pointers to sub-trees.  The children 
pointer is maintained to be NULL until the values vector is full, at which point the 
children pointer is set to be a dynamically allocated array of depth + 1 pointers, 
all initially set to NULL.  Any future insertions that pass through the node will 
actually result in an insertion into one of depth + 1 sub-trees. 

 

mi re 

everything > "fa"   
everything < "mi" 

everything > "re" 

everything > "mi"   
everything < "re" 
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a. Draw the exponential tree that results from inserting the following strings in the 
specified left-to-right order: 
 

"do" "re" "mi" "fa" "so" "la" "ti" 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Implement the expTreeContains predicate function, which given the root of an 
exponential tree and a string, returns true if and only if the supplied string is present 
somewhere in the tree, and false otherwise.  Your function should only visit nodes 
that lead to the string of interest.  Your implementation can rely on the implementation 
of find, which accepts a sorted string vector and a new string value and returns the 
smallest index within the vector where value can be inserted while maintaining sorted 
order.  You may implement this either iteratively or recursively. 

 
static bool expTreeContains(const expnode *root, const string& value) { 
 const expnode *curr = root; 
 while (curr != NULL) { 
    int pos = find(curr->values, value); // provided in section handout 
    if (pos < curr->values.size() && curr->values[pos] == value)  
   return true; 
     curr = curr->children == NULL ? NULL : curr->children[pos]; 
  } 
  return false; 
} 
 

do 

mi re 

fa la so ti 
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c. Write the expTreeInsert function, which takes the root of an exponential tree [by 
reference] and the value to be inserted, and updates the tree to include the specified 
value, allocating and initializing new expnodes and arrays of expnode *s as needed.  
Ensure that you never extend a values vector beyond a length that matches the node’s 
depth.  Feel free to rely on find from part b. 

 
static expnode *createExpNode(int depth) { 
 expnode *node = new expnode; 
 node->depth = depth; 
  node->children = NULL; 
  return node; 
} 
 
static void allocateChildPointers(expnode *node) { 
  node->children = new expnode *[node->depth + 1]; 
  for (int i = 0; i < node->depth + 1; i++) node->children[i] = NULL; 
} 
 
static void expTreeInsert(expnode *& root, const string& value) { 
 int depth = 1; 
 expnode **currp = &root; 
  while (true) { 
    if (*currp == NULL) *currp = createExpNode(depth); 
     expnode *curr = *currp; 
     assert(curr->values.size() <= depth); 
    int pos = find(curr->values, value); 
     if (curr->values.size() < depth) { 
       curr->values.insert(pos, value); 
       if (curr->values.size() == depth) allocateChildPointers(curr); 
       return; 
     } 
      currp = &curr->children[pos]; 
     depth++; 
   } 
} 
 

There’s also a recursive solution that avoids the double pointer calisthenics, and it 
adopts the same approach your textbook uses to insert a new value into a binary search 
tree.  In practice, however, unary recursion is frowned upon if there’s an equally time-
efficient iterative alternative, since the iterative approach can do all the work within a 
single function and a constant amount of local memory. 

 
static void expTreeInsert(expnode *& root, const string& value, int depth) { 
   if (root == NULL) root = createExpNode(depth); 
   assert(root->values.size() <= depth); 
   int pos = find(root->values, value); 
   if (root->values.size() < depth) { 
      root->values.insert(pos, value); 
      if (root->values.size() == depth) allocateChildPointers(root); 
    return; 
   } 
  expTreeInsert(root->children[pos], value, depth + 1); 
} 
 
static void expTreeInsert(expnode *& root, const string& value) { 
    expTreeInsert(root, value, 1); 
} 
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d. Finally, write the expNodeDispose function, which recursively disposes of the entire 
tree rooted at the specified address. 
 

static void expTreeDispose(expnode *root) { 
 if (root == NULL) return; 
  if (root->children != NULL) { 
    for (int i = 0; i < root->depth + 1; i++) 
       expTreeDispose(root->children[i]); 
     delete[] root->children; 
   } 
   delete root; 
} 

 


